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a b s t r a c t

Some reflections are made about the object of a recent debate on the role played by the viscous dissipa-
tion term in the local energy balance equation. The debate regards both clear fluids and fluid saturated
porous media. A strong accent has been placed on the role played by the pressure work term in the local
energy balance. In the present brief contribution, it is suggested that the focus on the pressure work is not
the most convincing escape from the possible paradoxes of viscous dissipation. On the other hand,
another focus is proposed, namely the most appropriate formulation of the energy balance in the frame-
work of the Oberbeck–Boussinesq approach to the description of buoyant flows.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction ous medium. The paradox can be described, without specifying if we
Two papers, [1,2], have opened a very interesting debate on the
role played by the viscous dissipation term in the energy balance
equation and its interplay with the pressure work term. In [1,2],
the author describes a possible violation of the first law of thermo-
dynamics in a problem of natural convection within a cavity either
filled with a clear fluid or with a fluid saturated porous medium.

In a recently published paper [3], a thorough analysis of the ef-
fect of viscous dissipation in porous flows is performed. In this
analysis, the cavity paradox described in Refs. [1,2] is revisited
pointing out that some of the conclusions drawn in these papers
are not completely correct. The common practice of neglecting
the pressure work term is not the only reason for possible para-
doxes of flows with viscous heating [3]. Another important actor
appears in this scene: the Oberbeck–Boussinesq approximation.
As it is clearly shown in [3], the role of viscous dissipation and
pressure work must be carefully evaluated in a correct perspective
of applicability of the Oberbeck–Boussinesq approximation.

The purpose of this short contribution is to add some further
reflections on this matter, by showing that a different formulation
of the local energy balance, the cv-formulation, can be more suitable
when the approximate Oberbeck–Boussinesq scheme is considered.

2. Resume of the cavity paradox of viscous dissipation

In Refs. [1,2], the author presents a paradox in two variants,
depending on the reference to a clear fluid or to a fluid saturated por-
ll rights reserved.
refer to a clear fluid or to a fluid saturated porous medium, as follows.
Consider a 2D cavity with impermeable boundaries (Fig. 1).

The horizontal top and bottom boundaries are adiabatic, the left
vertical wall is isothermal with temperature TH, the right vertical
wall is isothermal with temperature TC, with TH > TC. There is a
heat exchanged between the vertical walls corresponding in
steady state to a power _Q HC flowing from the hot boundary at
temperature TH to the cold boundary at temperature TC. A clock-
wise convection cell (or cells) will be established due to the den-
sity changes within the fluid. If we analyse this free convection
flow according to the Oberbeck–Boussinesq approximation by
taking into account the internal heating due to viscous dissipa-
tion, we would predict that the thermal power escaping the
enclosure at the right vertical boundary is the sum of two terms:
_QHC and the power generated by viscous dissipation _Q VD. On the
other hand, the thermal power entering the enclosure at the left
vertical boundary is merely _Q HC. Therefore, since the enclosure
represents a closed thermodynamic system we have a violation
of the overall energy balance:

_QHC– _Q HC þ _QVD: ð1Þ

The author’s reasoning goes on stating that the conceptual error that
causes this violation of the energy balance is having deleted the pres-
sure work term in the governing equations. In fact, this term would
have produced a further power generated inside the fluid, _QPW. This
power, unlike the power generated by viscous dissipation _QVD, would
have been negative and such as to balance exactly _QVD. Therefore, the
overall energy balance would have been fulfilled:

_QHC ¼ _QHC þ _Q VD þ _QPW with _Q VD þ _QPW ¼ 0:
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Nomenclature

cp; cv specific heat at constant pressure, specific heat at
constant volume

g gravitational acceleration
K permeability
L operator depending on the momentum model
n unit normal vector
p pressure
q heat flux density
_QC power escaping the cold boundary of the cavity
_QHC power entering the hot boundary of the cavity
_QPW power associated with pressure work
_QVD power generated by viscous dissipation
s strain tensor

T temperature
T0 reference temperature
TH; TC boundary temperatures
u velocity
_W mechanical power

Greek symbols
b volumetric coefficient of thermal expansion
k thermodynamic coefficient of isochoric pressure change
l, l0 dynamic viscosity, effective dynamic viscosity
q mass density
s viscous stress tensor
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This is the essence of the point raised in Refs. [1,2].
The author’s remark is correct, while the explanation based on

the pressure work term is not convincing. As it is pointed out in
[3], what is decidedly false is the sentence that he places (with neg-
ligible changes) in the Introduction of both Refs. [1,2]:

. . .the main results and conclusions apply to any natural or
mixed convection problem. . .
3. Why is the explanation based on the pressure work not
convincing?

The cavity paradox is developed within the framework of the
Oberbeck–Boussinesq approximation. As is well known, this
approximation consists in neglecting density changes anywhere
in the local balance equations except in the gravitational body
force term in the momentum equation. As a consequence, not only
we expect a violation of the energy balance, but also of the
momentum and of the mass balances. In fact, all these three bal-
ances will be imperfect due to the approximation introduced.
What is the extent of these violations? We don’t know in general,
since it depends on several variables the most important being cer-
tainly the externally prescribed temperature difference TH � TC.
This difference is the driving cause of the convective flow and of
the consequent viscous dissipation effect. The Oberbeck–Bous-
sinesq approximation is better fulfilled the smaller is TH � TC. In
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Fig. 1. Sketch of the enclosure.
particular, the smaller is TH � TC, the smaller is also the violation
coefficient in the overall energy balance, namely the ratio _Q VD= _QHC.

In my opinion, the argument involving the pressure work term
in the local energy balance is not convincing, for the following
reason.

The exact local energy balance for a clear fluid can be expressed
in two different formulations [4]

cv-formulation :

qcv
DT
Dt
þ pkT$ � u ¼ �$ � qþ s : s; ð2Þ

cp-formulation :

qcp
DT
Dt
� bT

Dp
Dt
¼ �$ � qþ s : s; ð3Þ

where D=Dt � o=ot þ u � $ is the convective derivative, p is pressure,
u is velocity, q is the heat flux density vector, s is the viscous stress
tensor, s is the strain tensor, cp and cv are the specific heat at con-
stant pressure and the specific heat at constant volume, respec-
tively. The thermodynamic parameters k and b are

k ¼ 1
p

op
oT

� �
q
; b ¼ � 1

q
oq
oT

� �
p
:

The term s : s is the power per unit volume generated by viscous
dissipation. The term bTDp=Dt is the power per unit volume gener-
ated by pressure work. The above formulations of the local energy
balance are general, since they don’t contain approximations or
hypotheses on the constitutive equations for the fluid. Note that
the right hand sides in both formulations are identical.

Suppose that now I apply the Oberbeck–Boussinesq approxima-
tion in the cv-formulation. The mass balance implies that u is sole-
noidal, $ � u ¼ 0, so that

cv-formulation ½Oberbeck—Boussinesq approximation� :

qcv
DT
Dt
¼ �$ � qþ s : s:

Viscous dissipation is everything one must deal with. Suppose that
the flow is stationary, then one has

qcv$ � ðuTÞ ¼ �$ � qþ s : s: ð4Þ

The Oberbeck–Boussinesq approximation allows me to treat q as a
constant and cv as a constant as well, since the temperature differ-
ences felt by the fluid must be small. Thus, if I integrate Eq. (4) on
the whole internal volume V of the enclosure, I obtain

0 ¼ _Q HC � _QC þ
Z

V
s : sdV ;
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where

_Q HC ¼
Z

hot boundary
n � qdS;

_Q C ¼
Z

cold boundary
n � qdS;

and n is the horizontal unit vector oriented from the hot to the cold
boundary. The vanishing of the volume integral of the left hand side
of Eq. (4) is a consequence of the boundaries being impermeable.
The volume integral of s : s is precisely _QVD. Therefore, I get

_Q C ¼ _Q HC þ _Q VD:

This equation provides the same information contained in Eq. (1).
The heat escaping the cold boundary is higher than the heat enter-
ing the hot boundary. Obviously, the explanation of the paradox is
not that proposed in Refs. [1,2], but the following one. I get a mis-
match in the energy balance because I have neglected, following
the Oberbeck–Boussinesq approximation, a term proportional to
$ � u (that is not exactly zero) and I have considered both q and
cv as constants (that is not exactly true). The conclusion can be sta-
ted in the form of a question: Why should I expect an approximate
theory to fulfil exactly an overall (mass, momentum, energy)
balance?

4. Why does not the cavity paradox apply to every natural or
mixed convection problem?

As stated at the end of Section 2, in Refs. [1,2] it is claimed that
the cavity paradox can be extended to any natural or mixed con-
vection problem. This is not true. It can be formulated if and only
if one deals with an enclosure having impermeable boundaries.
In other words, it applies if and only if the fluid system is a closed
thermodynamic system. If one has a flow system as, for instance, a
CT

HCQ
.

visc
hea

incoming fluid 

mechanical power 

W
.

W
.

Fig. 2. Sketch of an o
channel or duct (vertical, inclined or horizontal), the reasoning is
completely different.

I refer to the scheme in Fig. 2. I imagine a horizontal channel
with impermeable lateral boundaries, where the fluid enters with
a given mass flow rate (in steady regime) and exits with the same
mass flow rate. If the lateral boundaries are thermally insulated
and I take into account viscous dissipation, the fluid will enter with
a temperature TC smaller than the exit temperature TH, the differ-
ence being due to the viscous heating. As in the case of the enclo-
sure, the heat crossing the inlet section, i.e. the power _Q HC, does not
coincide with the power crossing the outlet section, i.e. the power
_QHC þ _QVD. However, here the mismatch does not imply any para-
dox as in the case of the enclosure, since the overall energy balance
is fulfilled. In fact, to ensure a steady mass flow through the chan-
nel, one must employ a mechanical device (a pump) that provides
a mechanical power contribution _W into the flow system. Thus,
one has

_QHC þ _W ¼ _Q HC þ _Q VD:

This energy balance is closed if _W ¼ _QVD, i.e. if the power generated
by viscous dissipation is perfectly balanced by the mechanical
power produced by the pump. In this case, the reasoning performed
in Refs. [1,2] does not lead to any apparent paradox. Obviously, if
buoyancy is taken into account and if the Oberbeck–Boussinesq
approximation is used, one should not expect the equality
_W ¼ _QVD to be perfectly satisfied.

5. The overall pressure work in a cavity

Let us assume that the fluid is contained in an enclosure
bounded by impermeable walls, whose internal volume is V. I con-
sider Eqs. (2) and (3) referred to a steady process. If I subtract Eq.
(2) from Eq. (3), I obtain
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qðcp � cvÞu � $T � bTu � $p� pkT$ � u ¼ 0: ð5Þ

The term bTu � $p is the pressure work term. I invoke the Oberbeck–
Boussinesq approximation, so that q is constant both in the mass
balance and in the energy balance, while $ � u ¼ 0. Then Eq. (5)
can be rewritten as

qðcp � cvÞ$ � ðuTÞ ¼ bTu � $p: ð6Þ

As stated in the previous sections, the Oberbeck–Boussinesq
approximation implies that the temperature range within the do-
main V occupied by the fluid must be small, so that it appears as
reasonable to assume that both cp and cv are constant. Thus, if I
integrate Eq. (6) in the domain V, I get

qðcp � cvÞ
Z

V
$ � ðuTÞdV ¼

Z
V

bTu � $pdV : ð7Þ

Since the boundary of V is impermeable, the integral on the left
hand side of Eq. (7) is zero. Therefore, the integral of the pressure
work term in a cavity with impermeable walls must be zero. This
conclusion rules out the conceivability of the reasoning appearing
in Refs. [1,2] on the balance between the overall viscous dissipation
contribution and the pressure work contribution, described in Sec-
tion 2.

6. The Oberbeck–Boussinesq approximation, the pressure work
and the reference temperature

Let us consider the stationary local momentum balance equa-
tion, according to the Oberbeck–Boussinesq approximation,

Lfug � qg½1� bðT � T0Þ� ¼ �$p; ð8Þ

where p is the pressure and L is an operator depending on the spe-
cial model considered, for instance,

Clear fluid : Lfug � qðu � $Þu� lr2u;

Darcy porous flow : Lfug � l
K

u;

Brinkman porous flow : Lfug � l
K

u� l0r2u:

All the properties q, l, l0, b, K are constants. The constant tem-
perature T0 is the reference temperature required by the Ober-
beck–Boussinesq approximation. The explicit dependence on T0

is an unpleasant feature, since seemingly the solution depends
explicitly on T0. However, this explicit dependence is only an
apparent one. In fact, if one takes the curl of Eq. (8), one
obtains

$� ðLfug þ qgbTÞ ¼ 0; ð9Þ

where the explicit dependence on T0 has disappeared and the pres-
sure field p is no more part of the solution.

If one considers the local energy balance Eq. (3) with reference
to a stationary flow, one notices that the pressure work term

pressure work ¼ bTu � $p

is the only term where the reference temperature arises again
explicitly. In fact, on account of Eq. (8), one has

pressure work ¼ �bTu � fLfug � qg½1� bðT � T0Þ�g

¼ �bTu �Lfug þ qbTu � g� qb2T2u � g
þ qb2TT0u � g: ð10Þ

The value of the term qb2TT0u � g is completely unknown, unless T0

is precisely determined.
It must be pointed out that, with or without the pressure work

term, the Oberbeck–Boussinesq local balance equations contain an
implicit dependence on the reference temperature T0. Indeed, the
values one should assign to all the constant properties q, l, l0, b,
K, cp refer to the temperature T0. However, this implicit depen-
dence is a negligible one since, as long as the Oberbeck–Boussinesq
approximation applies, all these properties have a poor depen-
dence on T0. Thus, one can forget this dependence on T0 inasmuch
as one neglects it in solving an isothermal flow problem or a heat
conduction problem.

According to the definitions given above, in order to yield a
sound physical theory, the Oberbeck–Boussinesq local balance
equations should not contain any explicit dependence on T0.
Therefore, one could adopt the cp-formulation of the local energy
balance and neglect the pressure work term, or adopt the cv-for-
mulation. In practice, both choices would lead formally to the same
equation except for the kind of specific heat (cp or cv). In the case of
liquid flows, this appears as a minor problem since most thermo-
dynamic tables report the data of ‘‘specific heat” without distin-
guishing between cp and cv. For liquid water at saturation
pressure, one has [5]

20 �C :
cp � cv

cp
ffi 0:6%;

50 �C :
cp � cv

cp
ffi 3%:

These discrepancies appear as reasonably acceptable in an approx-
imate theory (Oberbeck–Boussinesq) where several sharp assump-
tions have been made.

A special case where the pressure work term does not depend
explicitly on T0 and where this contribution can be easily com-
pared with the viscous dissipation contribution is Darcy parallel
horizontal flow. In this case, one has u � g ¼ 0, so that the pressure
work term, Eq. (10), is given by

pressure work ¼ �bTu �Lfug ¼ �bT
l
K

u � u;

while the viscous dissipation term is

viscous dissipation ¼ l
K

u � u:

One has

pressure work
viscous dissipation

����
���� ¼ bT:

For liquid water at saturation pressure, one has

20 �C : bT0 ffi 0:06;
50 �C : bT0 ffi 0:14:

For an ideal gas, one has b ¼ 1=T0. In this case, one would have a
perfect balance between viscous dissipation and pressure work at
those positions where T ¼ T0.

7. Conclusions

	 The paradox of the ‘‘energy generating” cavity pointed out in
Refs. [1,2] is a consequence of the Oberbeck–Boussinesq
approximation. The explanation based on the non-negligible
contribution of pressure work in the energy balance is not con-
vincing. In fact, according to the Oberbeck–Boussinesq approx-
imation, the integral of the pressure work term in a cavity with
impermeable walls must be zero.
	 The cv-formulation of the local energy balance appears to be the

simplest one, when the Oberbeck–Boussinesq approximation is
adopted.
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	 The difference between the cv-formulation and the cp-formula-
tion of the local energy balance with no pressure work term
relies only in the different values of cv and cp. The relative dis-
crepancy between these values for liquids is small.
	 The cp-formulation of the local energy balance with the pres-

sure work term has intrinsically a problem of explicit depen-
dence on the choice of the reference temperature T0, when
the Oberbeck–Boussinesq approximation is adopted.
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